

INDUSTRY 1.0

Mechanization, steam power, weaving loom

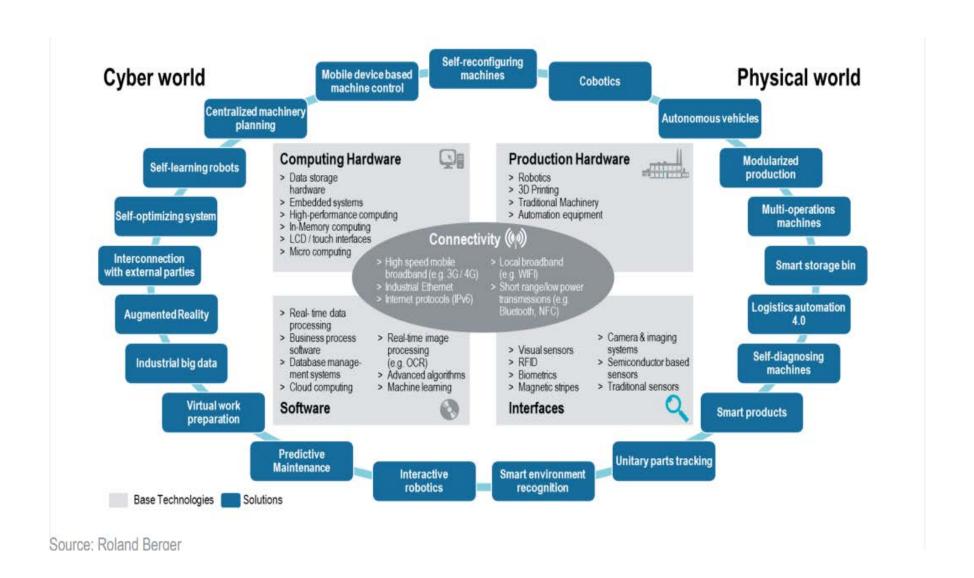
INDUSTRY 2.0

Mass production, assembly line, electrical energy

INDUSTRY 3.0

Automation, computers and electronics

INDUSTRY 4.0


Cyber Physical Systems, internet of things, networks

Impact of Revolution

- Introducing new product and means of producing existing products
- Disruption of Competitive Status Quo (Both within countries and Companies)
- New Requirements of Workforce and Infrastructure

Potential Industrial 4.0 Solutions

Process	From Rigid and Manual To Agile and Automatic
Product	From Standardized To Customized and Personalized
Scale of Factories	From Large Factories and Centralized Location To Small Factories and Decentralized location
Supply Chain	Stock Based Planning Dynamic and Predictive
Success Matrix	Low Cost, High Efficiency High Return on Capital Employed
Client Relationship	Low and Indirect High and Direct

IR 4.0 what is Changing for the Companies

To disrupt is to exist

720/ of CEOs say that rather than waiting to be disrupted by competitors, their organization is actively disrupting the sector in which they operate

technology disruption as more of an opportunity than a threat

Areas of greatest investment in technology expected in three years

Data analytics

Cognitive Cognitive Cognitive

Internet of Things

Digital concerns

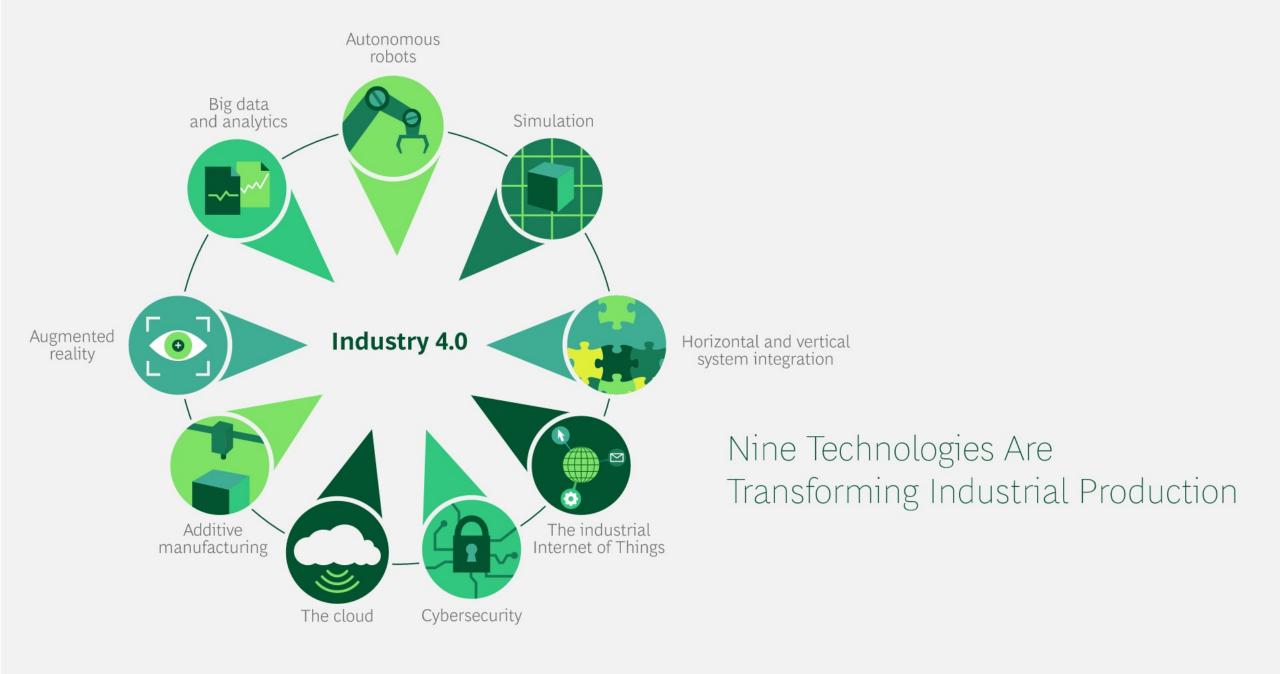
organizations do not have the sensory capabilities and innovative processes to respond to rapid disruption

concerned about integrating cognitive processes and artificial intelligence

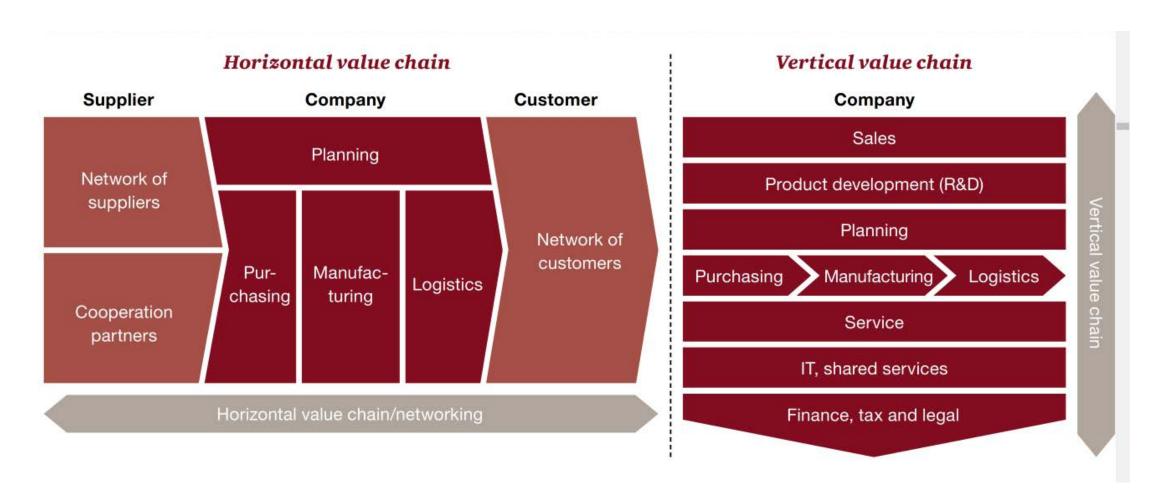
they are not leveraging digital as a means to connect to their customers effectively

Top five strategic priorities in next three years

Greater speed to market


Digitization of the business

21% Becoming more data-driven


21% Building public trust

Implementing disruptive technology

Source: KPMG LLP, U.S. CEO Outlook 2017

IR 4.0 Comprehensive of Digitalization

Source:PWC

Challenges and Opportunities of IR.40

Challenges of Industry 4.0

- Infrastructure gaps
- Outdated international rules and regulations that do not take into consideration Industry 4.0
- Standards and interoperability
- Data ownership and security
- Incentives and obstacles that may shape the development and diffusion of these new technologies (intellectual property protection and others)
- Reliability and stability of CPSs
- Transparency, privacy, ethics and security
- Inequality and exclusion
- Changes in the very nature of innovation processes and the implication for competition and barriers to entry

Source: UNIDO

Opportunities of Industry 4.0

- Economic gains, such as increased revenues because of lower transaction and transportation costs
- More reliable and consistent productivity and output and better quality products
- Shift to mass customization with an increased role for SMEs
- Enabling innovation across many applications, with much larger economic impact on growth
- Energy-efficient and environmentally sustainable production and systems
- Effective use of human and material resources
- Increased food security and safety
- Improvements in the health and safety of workers
- Changes in education and training systems
- More open innovation systems
- Changes in the organization of work, with more remote, flexible and on-demand work becoming a standard

Developing countries must keep up with technological changes to ensure that they are not left behind by Industry 4.0.

Applying Industry 4.0 technologies can be a gradual process and some solutions do not have to be expensive.

Good ICT infrastructure is needed to help SMEs move into the digital economy.

Countries and companies will need a digital strategy, and a strategic vision for a fully integrated multi-stakeholder policy approach.

Education and technical qualifications should play an integral role in digital strategy and business friendly environment.

Continuous learning and on-thejob training are necessary to develop the new skills required for Industry 4.0.

Paper: 17th UNIDO conference

Action Need to be taken

National standards to be consolidated on an international level;

Efficient collaboration between international standardization organizations;

Worldwide accepted reference model enriched by open source reference implementation;

Network of test centers accessible to SMEs; and

Standardization to be taken into account from the very beginning.

Standard Australia Perspective for Standardization for Industry 4.0 to be successful

Benefits of Standards

- Strengthening Industrial Competitiveness by
 - Improving Quality
 - Improving Compatibility
 - Simplifying Unification
 - And, Transmission Information

Benefit of International Standard

Getting Involved

Shape Industry
Give Company a voice
Market Access
Help Write the Future

Benefit for Business

Cut Cost
Increase Customer Satisfaction
Access New Market
Reduce impact on Environment

SMEs

Quality
Credibility, Trust
Global Best Practice and
Expertise
New Market
Regulation

Benefit for Consumers

Safety , Quality and Reliability

Benefit of Sustainable

development

Benefit of Government

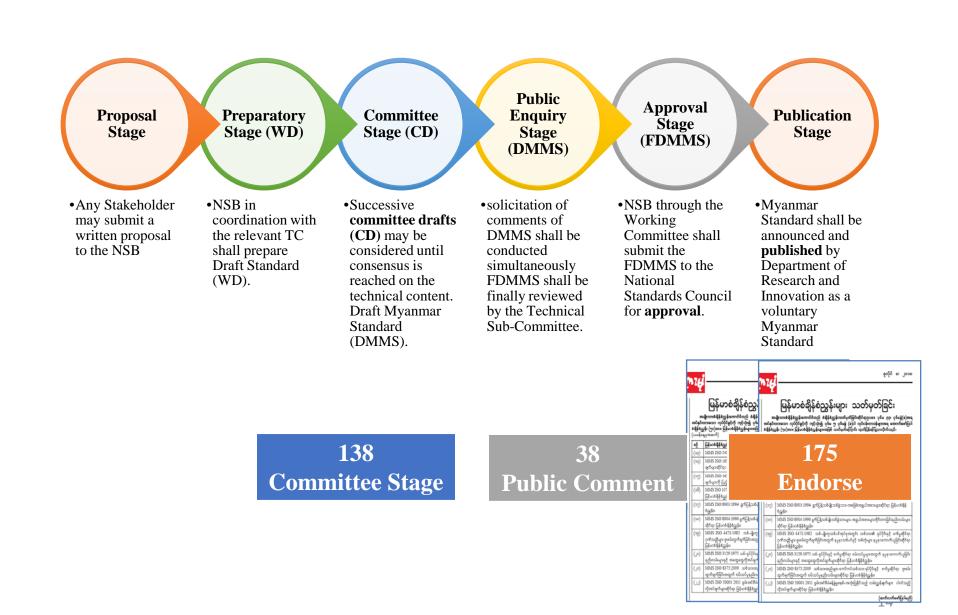
Standards as a basis for Regulation Cost-Effective High Degree of Acceptance

International Standard Provides Access to International Market and Make National Standard Better

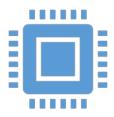
Current Status of Standardization

Standardization is still in Initial Stage. Standardization Law promulgated in 2015 and established Standardization Council, Working Committee and department.

Slow ICT Related standardization functions. Closed-linkage between relevant authorities for Policy is a necessity.



Interoperability problems may encounters for integration of Systems



Weak Collaboration Between Strategic Apex, Industry, Educational Institutes, practitioners and Standardization Body

Standardization Process

Standards for Readiness of Emerging Technologies

Readiness for Emerging Technology

Natural Language Encoding e-ID [Bio-Matrix Standard] Address and Zip Code

Guideline and Standardization for Emerging Technology

Block Chain

ΑI

Smart Cities

Areas of Standardization (for IR4.0 Eco-System)

Product Development

To Setting Guidelines and Standards for Process, Methodologies and Techniques of the development of Information Systems, and Information Technology infrastructure components

Service Delivery

To provide the Guideline and Standard for Process, Procedures, facilities level for providing of Information System implementation, Education, Maintenance Services.

Information Processing

To provide the guideline and Standard for Information Processing such as natural language processing [includes for embedded system], Interfaces, Standard for Information interchange, information security.

Development of Profession

To provide Guideline for ICT Related Education requirements, Skill acquiring, Certification and Accreditation, Professional Development, development of professionalism Code of Ethics

Suggested Standards Adoption for Governance

Information Security

Information Security Assurance ((ISO/IEC 27001:2013)

Information Access and Transfer(W3C Specifications: RFC 793 (TCP), 9/1981, RFC 794 (IPv4) 9/1981, and RFC 2460 (IPv6) 12/1998

Public Key Infra Structure(X.509)

Technology Architecture

Interoperability and Integration
IT Service Management(ISO/IEC 200001:2011)

Enterprise Architecture Framework TOGAF

ICT Skill Development

Risk Assessment Framework NIST, OCTAVE, COBIT

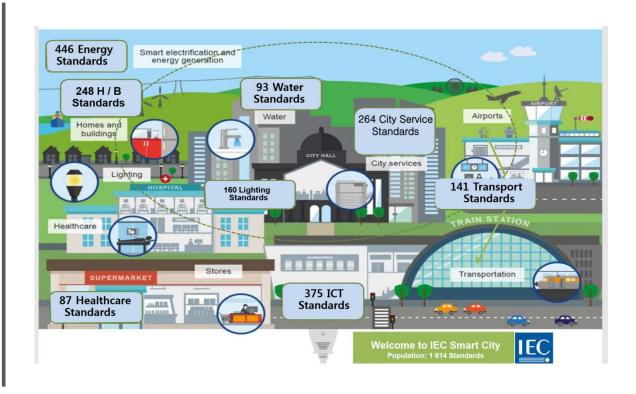
Encoding Standard
Internet Protocol IPV6

Open Source Software

Open Data

Workflow and DMS

Workflow
Project Documentation
Public Record Management



Software Development Standard

IT Governance and Management COBIT
Project Management Skills PMBOK
System Testing
Software Life Cycle Management CMMI

Standards for Smart Cities

IR 4.0 Relevant Standards

- Find out the need for standardization
- Prioritize the requirement of Standards in line with strategy of ach sector

ISO/IEC JTC 1	Information technology
ISO/IEC JTC 1/SC 7	Software and systems engineering
ISO/IEC JTC 1/SC 17	Cards and personal identification
ISO/IEC JTC 1/SC 27	IT Security techniques
ISO/IEC JTC 1/SC 32	Data management and interchange
ISO/IEC JTC 1/SC 37	Biometrics
ISO/IEC JTC 1/SC 38	Cloud Computing and Distributed Platforms
ISO/IEC JTC 1/SC 40	IT Service Management and IT Governance
ISO/IEC JTC 1/SC 41	Internet of Things and related technologies
ISO/TC 10	Technical product documentation
ISO/TC 10/SC 10	Process plant documentation
ISO/TC 39	Machine tools
ISO/TC 39/SC 10	Safety
ISO/TC 184	Automation systems and integration
ISO/TC 184/SC 1	Physical device control
ISO/TC 184/SC 4	Industrial data
ISO/TC 184/SC 5	Interoperability, integration, and architectures for enterprise systems and automation applications
ISO/TC 211	Geographic information/Geomatics
ISO/TC 261	Additive manufacturing
ISO/TC 292	Security and resilience
ISO/TC 299	Robotics
IEC TC 65	Industrial-process measurement, control and automation

Emerging Technologies for Digital Transformattion

- Awareness Application of Emerging Technologies to Respective business Sectors
- Taking part in Standardization and adoption of Standards for Emerging Technologies

Challenges of Standardization

Structure

Present Legal and Policy Framework

National Standard Institute

HR

Know-how, experiences
Standardization tasks are
doing as Secondary duties
and/or Voluntary Duties

Awareness

Information Systems
Users and Developers
weak in awareness of
Standardization

Industry does not actively take part in Standardization process

Collaboration

Stronger Collaboration is
Required between
Industry and
Standardization Bodies,
policy Makers

Coordination with
International
Standardization should be
extend

Standards to Implementation (Stakeholder participation Strategy)

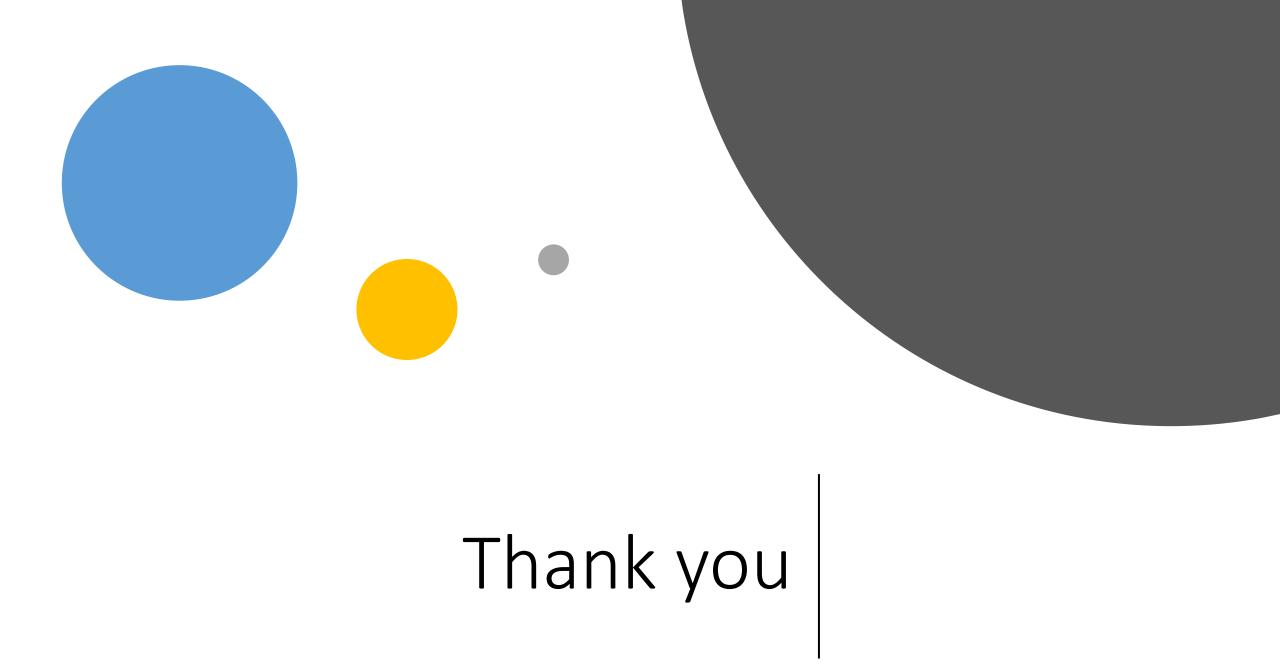
Discover

- Current Situation
- Recommended
 Best Practices and
 Frameworks
- Collaboration among practitioners, Organizations, Industries

Define

- Prioritize areas to standardize
- Adoption of Framework or Standards
- Increase
 Collaboration with
 International
 Standardization
 Organization

Implement


- Start from an Organization to Cover the whole Countries
- Continue Until Optimizing

Stake Holder Engagement

• IR 4.0 creates many opportunities and challenges. Keep up with technological changes to ensure to grasp opportunities for development.

Conclusion

- Standards plays vital roles in success of IR 4.0
- Awareness and education are necessary for adoption emerging technologies to every sectors
- Seriously taken into account for new skill sets requirements.
- Effective Stakeholder Engagement is important

